If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-17y=24=0
We move all terms to the left:
3y^2-17y-(24)=0
a = 3; b = -17; c = -24;
Δ = b2-4ac
Δ = -172-4·3·(-24)
Δ = 577
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{577}}{2*3}=\frac{17-\sqrt{577}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{577}}{2*3}=\frac{17+\sqrt{577}}{6} $
| -2x+4=19 | | –2b−3=–b | | 6+7x=-22 | | 3^2-4h=-5 | | 8x+10=9x+6 | | -54=-9(n-6) | | 4.8=n/5 | | 2x^2-6x=7x-20 | | -11=-3a-2 | | 1/2e-12=-18 | | 3y-1=+10 | | t+5t=3 | | 44=3x+4 | | 125m-100m+43425=45225-200m | | -2=n/(-7) | | 4^2+t=48 | | 4x+3x=5=47 | | 7r^2+32r+16=0 | | 5x+8-2x+3=13+8x-5 | | 3(y+4+5y)=y(2+4)3(y+4+5y)=y(2+4) | | 15x+17-32=3x-12+5 | | 5x-9=72 | | -17+-4+3z=13 | | 18=1/2l+7 | | 37=y+23 | | 7d-8d=16 | | -17=-15+h | | 1/4i-8=-5 | | 19+3z-10=38+z+1 | | x=12=12 | | 6(2)+2y=0 | | 18/12=u/10 |